EnerG2, a Seattle-based company manufacturing advanced nano-structured materials for next-generation energy storage breakthroughs, announced on January 23 that it has extended its product lines to further boost lithium-ion battery capacity and power performance. These improvements, designed to harness the benefit of silicon in Lithium-ion batteries, leverage EnerG2’s unique polymer chemistry-based approach and come less than year after launching production of hard carbons tailored for Li-ion anodes.

Blending carbon and silicon – while simultaneously providing additional electrochemically active hard carbon for greater control, stability and cycling – EnerG2’s cutting-edge and cost-effective new product is capable of replacing commonly used low-capacity graphite materials in lithium- ion batteries. According to a company press release, the composite material has been scaled for commercial manufacturing and has far-reaching implications for a consumer electronics industry with ever-increasing requirements for energy storage.

The solution will also have a special impact on the automotive business, where EnerG2’s silicon-containing materials will help electric vehicles travel anywhere from 200-300 miles on a single charge. In contrast, the company reports that component materials enabling the Nissan LEAF, for example, currently allow approximately 75 miles on a single charge; and the Chevrolet Volt has an all-electric range of 38 miles per charge.

“Our competitors are still working in the lab,” explains Rick Luebbe, EnerG2’s Co-Founder and CEO. “Meanwhile, we’re able to work rapidly at large scale, because this new product is a drop-in for our existing plant. U.S. manufacturing as a whole will benefit from our breakthrough, now that we’re competing as a successful lithium-ion battery materials supplier against Korea, Japan and China.”

EnerG2 has overcome two major challenges in order to deliver its new lithium-ion-battery solution.

First is cost. The company’s plant, and its proprietary Carbon Technology Platform, allow new materials such as the new nano-composite to be integrated faster, less expensively, and with less expensive equipment than ever before.

Second is chemistry. Silicon has always presented a problem with changes in volume during the charge and discharge cycle – expansion and contraction of the silicon effectively damages the battery to reduce both storage capacity and cycle life. But EnerG2’s composite of silicon and carbon addresses this issue and represents a major step change over the previous attempts to utilize the inherently high lithium ion storage capacity of silicon.

Says Dr. Aaron Feaver, Co-Founder and CTO of EnerG2: “EnerG2’s carbon-silicon solution for lithium-ion batteries was the obvious next step in product development for us. We had already developed the best hard carbon in the world, with superior capacity, power, and efficiency, so it was a natural evolution for us to use our hard carbon as a structurally reinforcing and electrochemical-enhancing backbone for silicon.”