The 273-mile-long Illinois River is a primary tributary of the Mississippi River and part of an important waterway connecting the Great Lakes to the Mississippi River. Barges transporting goods ranging from grain to oil traverse the waterway thanks in large part to several locks and dams managed by the U.S. Army Corps of Engineers (USACE). In August, GFRP wicket gates were installed on one of those navigational structures – the Peoria Lock & Dam on the Illinois River at Creve Coeur, Ill.

“Maintaining waterway navigation is a big part of what the Corps of Engineers does for our nation,” says Rich Lampo, materials engineer with the U.S. Army Corps of Engineers, Engineer Research & Development Center (ERDC) in Champaign, Ill. “But a lot of navigational structures have far exceeded their original design life. Our mission is to investigate the use of fiber-reinforced polymer materials to help maintain and replace aging components.”

That mission is critical considering that 95 percent of the dams managed by the USACE are more than 30 years old and 52 percent have reached or exceeded the 50-year service lives for which they were designed. According to the USACE website, it would cost $24 billion to fix all the dams that need repairs.

In 2011, the ERDC began partnering with West Virginia University (WVU) to investigate low-maintenance, corrosion-resistant composite components for locks and dams that lower life cycle costs. They began by designing, testing and implementing recess filler panels and wicket gates – low-risk applications that could demonstrate the potential use of composite materials in navigation structures. Recess filler panels are used in locks with emergency lift gates to fill in the area in the lock wall when the emergency gate is lowered. Without the panels, vessels passing through the lock could hit and damage exposed corners of the wall. Wicket gates help maintain a navigational pool in the river. The gates rest on the bottom of the river and are raised when the water gets too low.

Hota V. GangaRao, a civil and environmental engineering professor at WVU and director of the Constructed Facilities Center, is one of the investigators on the project. GangaRao began work on composites in 1987 and teamed with the USACE on three projects related to roadways and bridges in the 1990s. Work on those projects served as a building block for the lock and dam structures, which are typically made from wood, concrete or steel. “We are the first ones to implement GFRP-based products for navigational structures in the United States,” says GangaRao.