Those innovations can be at the material level or within end-product applications. “If you really want to improve the micromechanics of your materials, you can use simulation to tweak the properties of the fibers, the resin, the combination of the two or even the coating of fibers,” says Souza. “For those who build parts, simulation can help you innovate in terms of the shape of the part and the manufacturing process.”

One of the biggest advantages that design simulation has over the traditional engineering approach is time, says Jeff Wollschlager, senior director of composites technology at Altair. He calls conventional engineering the “build and bust” method, where companies make samples, then break them to test their viability. It’s a safe method, producing solid – although often conservative – designs. “But the downside of traditional approaches is they take a lot more time and many more dollars,” says Wollschlager. “And everything in this world is about time and money.”

In addition, simulation tools allow companies to know more about the materials they use and the products they make, which in turn facilitates the manufacturing of more robust products. “You have to augment your understanding of your product with something else,” says Wollschlager. “And that something else is simulation.”

A Leap Forward in Manufacturability
Four years ago, Montague and Matt Giaraffa, co-founder and chief engineer of Guerrilla Gravity, opted to pursue carbon fiber materials to make their bike frames lighter and sturdier. “We wanted to fundamentally improve on what was out there in the market. That required rethinking and analyzing not only the material, but how the frames are made,” says Montague.

The company also was committed to manufacturing its products in the United States. “To produce the frames in-house, we had to make a big leap forward in manufacturability of the frames,” says Montague. “And thermoplastics allow for that.” Once Montague and Giaraffa selected the material, they had to figure out exactly how to make the frames. That’s when Bosworth – and composites simulation – entered the picture.

Bosworth has more than a decade of experience with simulation software, beginning as an undergraduate student in mechanical engineering as a member of his college’s Formula SAE® team to design, build and test a vehicle for competition. While creating the new frame for Guerrilla Gravity, he used Altair’s simulation tools extensively, beginning with early development to prove the material feasibility for the application.