As you wade into the waters of simulation, consider the following:

Assess your goals before searching for a package. Depending on what you are trying to accomplish, you may need a comprehensive suite of design and analysis tools or only a module or two to get started. “If you want a simplified methodology because you don’t feel comfortable with a more advanced one, there are mainstream tools I would recommend,” says Souza. “But if you really want to innovate and be at the cutting-edge of your industry trying to understand how materials behave and reduce costs, then I would go with a more advanced package.” Decide upfront if you want tools to analyze materials, conduct preliminary designs, optimize the laminate schedule, predict the life of composite materials, simulate thermo-mechanical behaviors and so on.

Find programs that fit your budget. Many companies offer programs for startups and small businesses that include discounts on simulation software and a limited number of hours of free consulting. Guerrilla Gravity purchased its simulation tools through Altair’s Startup Program, which is designed for privately-held businesses less than four years old with revenues under $10 million. The program made it fiscally feasible for the mountain bike manufacturer to create a high-performing solution, says Bosworth. “If we had not been given that opportunity, we probably would’ve gone with a much more rudimentary design – probably an isotropic, black aluminum material just to get us somewhere in the ballpark of what we were trying to do,” he says.

Engage with vendors to expedite the learning curve. Don’t just buy simulation tools from suppliers. Most companies offer initial training, plus extra consultation and access to experts as needed. “We like to walk hand-in-hand with our customers,” says Souza. “For smaller companies that don’t have a lot of resources, we can work as a partnership. We help them create the models and teach them the technology behind the product.”

Start small, and take it slow. “I see people go right to the final step, trying to make a really advanced model,” says Bosworth. “Then they get frustrated because nothing is working right and the joints aren’t articulating. They end up troubleshooting so many issues.” Instead, he recommends users start simple, as he did with the thermoplastic bike frame.

Don’t expect to do it all with simulation. “We don’t advocate for 100 percent simulation. There is no such thing. We also don’t advocate for 100 percent experimentation, which is the traditional approach to design,” says Wollschlager. “The trick is that it’s somewhere in the middle, and we’re all struggling to find the perfect percentage. It’s problem-dependent.”