Lewicki says this was possible through simulation. A group of engineers performed computational modeling on LLNL’s supercomputers. LLNL says the engineers needed to simulate thousands of carbon fibers as they emerged from the ink nozzle to find out how to best align them during the process.

“We developed a numerical code to simulate a non-Newtonian liquid polymer resin with a dispersion of carbon fibers. With this code, we can simulate evolution of the fiber orientations in 3D under different printing conditions,” said fluid analyst Yuliya Kanarska. “We were able to find the optimal fiber length and optimal performance, but it’s still a work in progress. Ongoing efforts are related to achieving even better alignment of the fibers by applying magnetic forces to stabilize them.”

The direct ink writing process also makes it possible to print parts with all the carbon fibers going the same direction within the microstructures, allowing them to outperform similar materials created with other methods done with random alignment. Through this process, researchers said they’re able to use two-thirds less carbon fiber and get the same material properties from the finished part.

The researchers will next turn to optimizing the process, figuring out the best places to lay down the carbon fiber to maximize performance.