“This project addresses some of the most challenging aspects of composites manufacturing and commercial adoption in high volume market applications. Phase I completion signals a step forward in demonstrating a significant impact in the ability to make lower cost parts with the design freedom to meet performance requirements of challenging applications. This was one of the earliest projects launched by IACMI and it serves as a great example of collaboration and partnering to accelerate innovation. We look forward to continuing our progress in Phase II,” said Jan Sawgle, Program Manager DuPont Transportation and Advanced Polymers.

“The synergy between Purdue, Fibrtec, and DuPont on this project demonstrates the power of public-private partnerships in fostering innovation and delivering novel solutions to real-world problems. In this project, we focused on manufacturing informed performance, which is of critical importance in the design of composite components and structures,” said Michael Bogdanor, director of the Composites Design Studio in the Purdue Composites Manufacturing and Simulation Center. “Phase I of this project was instructive in developing new simulation tools to be able to predict the behavior of the RFF and FibrFlex technologies. This resulted in new methods to predict the behavior of the material system in manufacturing as well as the ultimate performance of parts.”

“We are pleased by the outcomes of Phase I and look forward to continued development of these advanced carbon fiber composite materials,” said IACMI Chief Executive Office, John A. Hopkins. “Through the second phase of this project we will more fully characterize these novel carbon fiber thermoplastic prepreg forms and validate their use in molding processes suitable for high-rate, cost-sensitive applications. This will showcase their suitability for large-scale deployment, especially in the automotive industry, which is an important part of our long-term goals to reduce energy use.”

This project offers a new CFRP manufacturing process when compared to the two other typically deployed processes which have significant drawbacks that limit their mainstream, high-volume use in the automotive and aerospace industries. One mainstream current technique weaves dry carbon fiber tows into a fabric, layers the fabrics with thermoplastic resin films, and subsequently heats and compresses them into a well-consolidated composite. While this method is ultimately effective in creating a carbon fiber fabric, the process has several drawbacks. One drawback is that the carbon fibers often break during the weaving process, releasing short, conductive carbon fiber strands into the local environment. Therefore, the surrounding looms and equipment must be electrically isolated. Another drawback is the relatively slow speed which is associated with this traditional process. Creating carbon fiber composites through this weaving method is roughly one-third the speed of that required to make glass fiber-based fabrics.